
Monitors, Messages, and Clusters:

the p4 Parallel Programming System

Ralph M. Butler

�

College of Computing Sciences and Engineering

University of North Florida

Jacksonville, FL 32224

rbutler@sinkhole.unf.edu

Ewing L. Lusk

y

Mathematics and Computer Science Division

Argonne National Laboratory

Argonne, IL 60439

lusk@mcs.anl.gov

Abstract

p4 is a portable library of C and Fortran subroutines for programming parallel computers.

It is the current version of a system that has been in use since 1984. It includes features

for explicit parallel programming of shared-memory machines, distributed-memory machines

(including heterogeneous networks of workstations), and clusters, by which we mean shared-

memory multiprocessors communicating via message passing. We discuss here the design goals,

history, and system architecture of p4 and describe brie
y a diverse collection of applications

that have demonstrated the utility of p4.

1 Introduction

p4 is a library of routines designed to express a wide variety of parallel algorithms portably, e�ciently

and simply. The goal of portability requires it to use widely accepted models of computation rather

than speci�c vendor implementations of those models. The goal of e�ciency requires it to use

models of computation relatively close to those provided by the machines themselves and their

system software. And the goal of simplicity requires it to provide programmers with a relatively

small number of concepts, while providing a rich enough set that they can express the algorithms

they have designed.

These goals are not always consistent. In some cases, the inconsistency has been resolved in p4

by providing multiple ways to do things. (For example, p4 provides completely automatic bu�er

management, but if a programmer prefers to deal with it himself to avoid the overhead of an

extra copy operation, then p4 provides the appropriate bu�er-management routines.) In other

cases, judgments have been made regarding the balancing of portability, e�ciency, and simplicity

considerations. In many situations, considerable complexity has been absorbed into p4 itself in order

to provide simplicity and portability to the programmer.

�

This work was partially supported by National Science Foundation grant CCR-9121875.

y

This work was supported by the O�ce of Scienti�c Computing, U.S. Department of Energy, under contract

W-31-109-Eng-38.

1

The most distinguishing feature of p4 is its support for multiple models of parallel computa-

tion. For the shared-memory MIMD model, it provides the monitor paradigm [14] for coordinating

access to shared data, and runs on \true" shared-memory computers such as the Sequent symme-

try and Alliant FX/2800, as well as NUMA (non-uniform memory access) machines that provide

a shared-memory computational model, like the BBN TC-2000 and Kendall Square KSR-1. For

the distributed-memory MIMD model, it provides the \usual" typed message-passing functions and

global operations, and supplies implementations on all the platforms that support this model, such

as the Intel Touchstone Delta and TMC CM-5, shared-memory machines such as the Sequent Sym-

metry and Kendall Square KSR-1, and heterogeneous networks of workstations. It also provides for

explicit management of clusters, in which both shared- and distributed-memory MIMD models are

explicitly used at the same time. It provides no support for the SIMD computational model.

In the following sections, we describe p4 in detail. Section 2 outlines the history of that branch

of portable parallel programming research at Argonne that has given rise to p4, and explains its

relationship with other systems. Section 3 outlines the basic functions in the library and describes

some more advanced features as well. Section 5 describes the implementation, including some

interesting aspects of p4 not visible to the user. Section 6 describes a representative sample of p4

applications that illustrates some of the uses to which p4 has been put by its users. Finally, we

mention some related projects and enhancements, largely done by others, that have added useful

features to p4, and conclude with some re
ections and future plans.

2 Background

p4 is a third-generation system. Here we trace its background (see Figure 1) in order to show which

constructs have held up and which have changed as the system has evolved.

Original m4 macros for

monitors in HEP Fortran

Argonne m4 macros for

monitors & messages

"monmacs" PPPP book

C++ version

(Sequent)

Argonne

Fortran messages

p4

Stanford

SPLASH

extensions

TCGMSG

message−passing

GMD macros

(Reactor sim.)
(Chemistry)

(grid problems)

(Memory tracing)

(object−oriented)

Figure 1: p4 Family Tree

2

2.1 The Beginning

In 1984 Argonne National Laboratory acquired a Denelcor HEP (Heterogeneous Element Processor)

[15], the �rst commercial multiprocessor and the �rst machine in what would become Argonne's

Advanced Computing Research Facility (ACRF). The HEP was a true shared-memory machine

with a multistage pipeline that made it appear to have between 8 and 12 processors. (A larger

version was available at the Army Ballistics Research Laboratory.) Argonne scientists quickly came

to grips with the problem of how to program this machine.

The HEP was the �rst in a long line of parallel computers that have been delivered with familiar

sequential languages (the HEP had only Fortran) but unfamiliar, nonportable, and proprietary ex-

tensions for accessing and controlling parallelism. In the case of the HEP, the extension consisted of

\asynchronous variables" by which annotations on individual Fortran variables triggered synchro-

nizations in the hardware, leading to a type of data
ow synchronization in Fortran programs. The

mechanism was e�cient, possibly even elegant, but extremely di�cult to program with. As a result,

each group of researchers at Argonne that used the HEP moved quickly from dealing with HEP

Fortran extensions to creating a programming environment they could use for applications.

Ewing Lusk and Ross Overbeek chose monitors as their central paradigm for controlling access

to shared data by multiple processors [21]. A monitor is an abstract data type encapsulating shared

data, initialization instructions, and critical code sections. Monitors were extensively studied for

their theoretical properties in the early seventies in the context of a scienti�c approach to operating

systems [11, 14]. We have found them a durable construct for shared-memory programming.

To implement monitors on the Fortran-only HEP, we de�ned macros for monitor operations and

used the m4 macro processor to expand them on our VAX into HEP Fortran, and then transferred

the code to the HEP for compilation [20]. This system worked well, and we were able to use the

HEP quite productively [7, 17].

2.2 Monmacs

As parallel processing entered the commercial marketplace, the ACRF at Argonne expanded in 1985

to include machines from Alliant, Encore, Sequent, and Intel. The HEP macros for monitors were

ported to the Alliant, Encore, and Sequent and were expanded to include C as well as Fortran. The

package was still m4-based, but compilation was simpler because m4 ran on the machines themselves.

The package did not have an o�cial name at this point, but because of its macro de�nition basis and

the focus on monitors it was sometimes called \monmacs" or \parmacs." The package was expanded

to include message passing for all three of the environments that supported the distributed-memory

model: the iPSC/1, the (new) workstation network, and the shared-memory machines. Thus the

original motivation for the invention of the library, namely, to be able to program with a well-

understood programming paradigm, gave way to portability as the main motivation. It was at the

end of this period that those who had collaborated on the implementation wrote the book Portable

Programs for Parallel Processors [3], which served to publicize the system widely. The code itself was

distributed with the book and also over the network. The ACRF sta� held regular classes in parallel

computing, and used \monmacs" to teach students how to program on many parallel machines at

the same time.

2.3 The Interim Period

During the next few years (1987{1989), development of the system by its originators tapered o�,

and the gap thus created was �lled by others who built a variety of interesting and useful systems

that either used parts of its code or were inspired by p4. The version included in the book [3] had

only rudimentary support for message passing in Fortran, so that was added by Dave Liebfritz at

3

Argonne. Bob Beck at Sequent did a C++ version of the monitors part [1]. Rolf Hempel at GMD

greatly improved the Fortran interface and added extensive functionality on top of it for grid-based

computation. He borrowed the word PARMACS, and what is now called PARMACS is his system,

widely used in Europe [2]. Robert Harrison of Argonne's Chemistry Division re-implemented the

message-passing subsystem to provide more e�ciency, better error handling, and a library of global

operations in his system TCGMSG [12]. Many of his enhancements were later incorporated into p4.

The SPLASH group at Stanford built their collection of shared-memory applications [24] on monmacs,

adding instrumentation macros to support assorted research projects in parallel programming.

2.4 The Current System

In 1989 Ralph Butler and Ewing Lusk began a complete rewrite of the entire system, with the goal

of producing a very robust system for wide distribution that included features present from the be-

ginning as well as new features (message passing among heterogeneous machines, global operations)

that users were requesting. There were also a great variety of new parallel machines and worksta-

tions to support. This e�ort, concentrated in 1990 and 1991, produced the current p4, which takes

its name from the title of the 1987 book [3] and its functionality from all previous versions, going all

the way back to the HEP. The interface has changed little since p4 was �rst released, although many

performance improvements have been made, and programs written for the p4 of 1989 run essentially

unchanged on machines only released in 1993.. While a number of features have been added, little

has been removed, and virtually all p4 programs ever written will run on the current version (which,

as this is being written in April of 1993, is version 1.3).

3 General Capabilities

In this section we describe the basic user interface for the various computational models supported

by p4. We focus on the C interface; Fortran-callable versions of most routines are also available. The

C interface contains more sophisticated functions and provides the programmer more opportunities

for optimization.

3.1 The p4 Process Model and Starting Up

p4 tries to be as
exible as possible about how processes will be started. It is assumed that the user

executes a command in response to a system prompt. Depending on the particular environment,

this may start a large number of processes or may start a single process, which in turn will start

others. The precise disposition of processes (the machines they will run on, the executable �les,

and the grouping into clusters of processes that share memory) is usually speci�ed in a \process

group �le," or \procgroup �le" for short. The name of the procgroup �le is typically a command-

line argument to a p4 application, and the function p4 create procgroup, called by the initial or

\master" process, reads the �le and starts up the collection of p4 processes. Since a user may wish

to obtain the information normally speci�ed in the procgroup �le in his own way, access is also

provided to the data structures normally �lled in by p4 create procgroup; in this case p4 startup

is called to start the processes based on these data structures. On machines where all processes

are started externally at the same time, the p4 create procgroup performs necessary initialization,

after which the \master" process can join in the general computation, as in the example in Section

3.7. Thus p4 can be used to program in the \SPMD" model (single program, multiple data) as well

as in the \master-slave" model.

All p4 programs must execute a p4 initenv call before any other p4 calls; in particular, a process

does not have a p4 process id|an integer between 0 (the initial process) and one less than the total

4

number of processes|until it has executed p4 initenv. Then p4 get my id returns a process's own

p4 identi�er.

Figure 2: Graphical interface to p4

Recently an experimental graphical user interface has been constructed to make it easier to run

p4 programs. It is shown in Figure 2. It dynamically locates workstations on the network and makes

it easy to construct a valid procgroup �le and then run a p4 application with just a few mouse clicks.

This system was easily built using Tcl/Tk [23].

3.2 Shared Memory and Monitors

The most primitive components of a shared-memory computational model are semaphores and locks,

and these are what the vendor libraries typically supply. One can argue that programming with

these concepts is somewhat like programmingwith branch instructions. Just as the \if-then-else" and

\do-while" of structured programming can be thought of as a structured use of branch instructions

(which, after all, are still there in the compiler-generated machine code), so monitors can be thought

of as a structured use of locks.

The p4 system provides the monitor data type in C by type de�nitions, and also a collection of

useful monitors. The data encapsulated in monitors resides in shared memory, which is managed

with the p4 shmalloc and p4 shfree functions. The lack of memory-management functions in

Fortran makes it di�cult to describe monitors in a portable way, and so we dropped support for

monitors in Fortran in p4, at least temporarily. They may resurface eventually (see Section 8). The

fundamental monitor operations (see [14]) are provided by p4 menter, p4 mexit, p4 delay, and

p4 continue. With these, users can de�ne their own monitors in a completely portable way. Over

the years we have seldom found it necessary to write new monitors, �nding it quite adequate to

rely on a small set of monitors de�ned in the earliest versions of p4. These include p4 barrier,

5

to synchronize all or a subset of the processes, p4 getsub for expressing loop-level parallelism, and

p4 lock and p4 unlock for occasional low-level operations. The most useful monitor of all has been

what we call the \askfor" monitor, whose fundamental operation is p4 askfor, which returns a

user-de�ned task. The p4 askfor and its related routines p4 update, p4 probend, and p4 progend,

provide su�cient functionality that a user may write a customized, general dispatching algorithm

for a particular application. The p4 User's Guide [4] provides details and examples.

Note that p4 does not implement monitors on distributed-memory machines, since then the

computational model would be too far away from the hardware for the e�ciency that p4 aims for.

The monitor operations are only provided on platforms that supply to the programmer a shared-

memory computational model.

3.3 Distributed Memory and Messages

p4 provides facilities for sending and receiving typed messages by p4 send and p4 recv. These are

\blocking" operations in the sense that when the p4 send returns, the bu�er may be reused, and

when the p4 recv returns, the message is in the bu�er. The \probe" operation (p4 msgs available)

allows one to test for the arrival of a message before committing to wait for it. Optional versions

of p4 send specify synchronous operation (p4 sendr does not return until the message has been

received by the execution of a p4 recv at the destination), heterogeneous communication (p4 sendx

has a data type argument that prescribes translation into standard data format with xdr), or user-

managed bu�ers (p4 sendb requires that a bu�er be preallocated by p4 msg alloc to avoid the

overhead of copying data from the user's memory into a formatted p4 bu�er).

3.4 Clusters

Management of a collection of processes, some subsets of which share memory, utilizes both the

monitor and message-passing parts of the p4 library. In addition, there are routines for identifying

a \cluster master" process in each cluster (p4 am i cluster master), �nding out the number of

clusters (p4 num cluster ids), and �nding out the process identi�ers of the processes in one's

own cluster (p4 get cluster ids). These routines and other support the explicit expression of

algorithms that take advantage of the cluster environment.

3.5 Miscellaneous Functions

A number of p4 library functions are of general utility. Program sections can be timed to the mil-

lisecond with the p4 clock routine, and on most machines to the microsecond with the p4 usclock

routine. The function p4 dprintf can be used to print user messages, which p4 will route back

to the terminal where the p4 application was started. The message will be automatically tagged

with the identi�er of the process that issued it. p4 dprintfl takes a level number as an argument,

so that messages can be �ltered by debugging level, which is a command-line argument. Since p4

itself is instrumented with p4 dprintfl's (although a compile-time switch can remove them), it is

possible to get detailed traces of the internal activities of p4, sometimes necessary to catch even a

user bug. p4 error, called by either p4 or the user, attempts to produce a useful error message and

then causes all processes to exit.

3.6 Collective Operations

p4 provides a number of collective operations, particularly useful in the distributed-memory model.

p4 global op takes as one of its arguments an operation to be performed on distributed data. It

6

is thus relatively easy to expand the set of collective operations. Currently supplied are maximum,

minimum, absolute-value-maximum, absolute-value-minimum, sum, and product. Each operates on

a vector of integers,
oats, or doubles.

3.7 An Example p4 Program

For a
avor of what a p4 program looks like, we give in Figure 3 example of a program in which

all processes send messages to one another. The program here is in C, but the Fortran would look

quite similar.

#include "p4.h"

#define GREETING 100 /* message type for greeting */

main(argc,argv)

int argc;

char **argv;

{

p4_initenv(&argc,argv); /* initialize self */

if (p4_get_my_id() == 0) /* if first process */

p4_create_procgroup(); /* initialize others */

worker(); /* all processes do same work */

p4_wait_for_end(); /* wait for orderly shutdown */

}

worker() /* all processes do this */

{

char *incoming, *msg = "hello";

int myid, size, nprocs, from, i, type;

myid = p4_get_my_id(); /* who am I? */

nprocs = p4_num_total_ids(); /* how many all together? */

for (i=0; i < nprocs; i++)

{

if (i != myid)

p4_send(GREETING, i, msg, strlen(msg)+1); /* send msg */

}

for (i=0; i < nprocs - 1; i++)

{

type = from = -1; /* receive any message */

incoming = NULL; /* automatic buffer allocation */

p4_recv(&type,&from,&incoming,&size); /* recv msg */

p4_dprintf("%d received msg=:%s: from %d\n",myid,incoming,from);

p4_msg_free(incoming); /* free buffer */

}

}

Figure 3: A Simple p4 Program

To run this program on either an Intel iPSC860 or a Sequent Symmetry, one would start it with

the following procgroup �le:

machine.anl.gov 32 /home/usr/p4progs/machine/example

To run the same program on a network of workstations, one would just change the procgroup

7

�le to something like:

local 0

sun1.anl.gov 1 /home/usr/p4progs/sun/example

sun2.anl.gov 1 /home/usr/p4progs/sun/example

ibm1.anl.gov 1 /home/usr/p4progs/ibm/example

ibm1.anl.gov 1 /home/usr/p4progs/ibm/example

4 Performance

Figure 4: p4 Network Performance

E�ciency is a major goal of p4, and has been the focus of considerable e�ort. Although there is still

room for further optimization, p4 does not currently add a signi�cant amount of overhead to the

underlying transport layer. Although applications are more important than benchmarks, we have

occasionally tested p4 in \benchmark" mode to make sure that it is reasonably e�cient. In Figure 4

we compare the round-trip transmission rates between two processes for a number of message sizes.

The curve marked \ipc/p4" represents p4 on an ethernet connecting two Sparc 10 workstations.

The curve marked \fddi/p4" shows that p4 is fully able to take advantage of a faster transmission

layer and that an FDDI-connected workstation network can compete with a specialized message-

passing machine. The curve marked \i860" shows message-passing performance of the same program

converted to run with Intel primitives. (The barely visible \zigzag" at 128 bytes shows that the test

program is sensitive enough to pick up the protocol change that occurs on the iPSC/860 at that

message length.)

8

5 Architecture

In this section we describe some noteworthy features of the current p4 implementation.

5.1 Starting Processes

Normally the user starts one process, which uses the information in the procgroup �le to start other

processes. For each remote cluster, the process uses the Unix remote shell command rsh to start

one of the processes, called the \cluster master" on the speci�ed machine. Then each cluster master

creates the processes it will share memory with via the Unix fork call. Processes can also be created

explicitly by p4 create, which forks one process that will share memory with its parent.

An alternative to the remote shell mechanism is provided for faster startup, particularly on

workstation networks. In many environments a \server" process can be started on the remote

machines ahead of time. When p4 wants to start a process on a remote machine, it �rst attempts to

contact the server. If the server is present, then it forks the remote process, which happens quickly;

if the server is not running, then the usual remote shell mechanism is used. A system like this must

be constructed quite carefully if it is not to compromise the security of the network. The server

distributed with p4 takes all of the precautions of rsh and then some. It requires preregistration of

the application in a �le readable only by the user, and may require a password from the user in the

middle of the startup process. The server method is required when remote shell commands are not

permitted on the network. Scripts are supplied with p4 to manage a collection of servers.

5.2 Monitors

Shared memory is managed by p4 shmalloc and p4 shfree, which have di�erent implementations

on di�erent shared-memory machines. On those with very primitive memory management systems

for shared memory (for example, no \free" operation), we have implemented a simple and portable

memory management subsystem inside of p4. We are thus able to present the same interface to the

programmer no matter what the underlying system is.

The most fundamental operation for shared-memory programming is the lock . We use spin locks

on most systems, although a few machines have more sophisticated locking functions that we use

when possible. It is then possible to layer the basic monitor-building primitives (p4 enter, etc.) on

top of the locks, and then the library of monitors (p4 barrier, p4 askfor, etc.) on top of these.

Thus almost all of the code in the implementation is completely portable; to implement monitors

on a new shared-memory machine, one needs only a new set of de�nitions for locks. For example,

the current implementation of p4 does not take advantage of special vendor-speci�c barrier code,

although it would be relatively easy to extend the system to do so.

5.3 Message Passing

A small amount of performance has been sacri�ced in order to make most of p4's implementation

code portable. During a p4 send, the user's data is copied into a p4 bu�er, which contains a 40-byte

header. (This step is bypassed if the user obtains the bu�er complete with header by means of

p4 msg alloc and builds his message in it.) Once the bu�er has been packed with the message and

the header information (destination, sender, message type, length, data type, acknowledge-request-

ag), p4 looks up the destination in a table to determine how to deliver it. If the sending and

receiving process share memory, then the bu�er is just placed in the destination process's queue. If

there is a machine-speci�c send operation available (e.g., the two processes are on an iPSC/860),

then the appropriate vendor-speci�c send operation is used. If the message must travel over a

9

TCP/IP network, then if a socket is already open to the destination process, it is used; otherwise

a socket is opened �rst. Note that only connections that are going to actually be used are opened.

Currently such sockets are left open, and one can run out of them (although this seldom happens;

modern workstations support lots of open sockets). A more sophisticated p4 implementation may

close sockets to reuse their �le descriptors. xdr is used to translate messages between machines with

di�erent data formats. This is done only when absolutely necessary; p4 contains a table of those

pairs of machines that require translation.

In some cases the copying of messages into p4-maintained bu�ers can speed things up. On the

Intel iPSC/860 and DELTA we can use Intel's isend and return immediately to the user instead

of csend, which blocks until the message has been sent. The p4 bu�er is
agged as \in use," and

the isend is waited on only when the bu�er is really needed later, by which time the isend will

probably have completed.

During a receive operation, all possible sources of incomingmessages are checked until the criteria

(source and type) speci�ed on the p4 recv are satis�ed. For transmission layers where the size of a

message is made available before the message is read (this is done on TCP/IP networks by reading

the header before the rest of the message), a bu�er is allocated for the message to be read into. The

p4 recv returns a pointer to this bu�er. Thus a user need not know ahead of time the size of the

message. Alternatively, the user can allocate a bu�er ahead of time. This approach allows reuse of

the same area by the user for multiple messages.

Allocation and deallocation of bu�ers are optimized by maintaining a pool of available bu�ers of

varying sizes. The sizes of these bu�er pools can be set by the user, using p4 set buf. The default

is to maintain pools for messages of sizes 64, 256, 1K, 4K, 16K, 256K, and 1M.

5.4 Clusters

When one is combining the shared- and distributed-memory models, some subtle issues arise re-

garding local and global synchronization. For example, the cluster slaves that are forked o� by the

cluster master need to wait until it has obtained shared memory, which is under user control, before

commencing operations on shared memory. They can't wait in an ordinary barrier because a user

barrier is created in user-obtained shared memory, which is exactly what they don't have at the

time they are created. Therefore a special built-in barrier is provided for this purpose, accessed by

p4 cluster mem synch.

One unusual implementation of p4 was on the short-lived Alliant CAMPUS system, which had

HiPPI switches connecting shared-memory Alliants. For this machine we and Robert Harrison wrote

an interface to the HiPPI switch that would support p4 and TCGMSG types of operations. It is

exactly this type of hardware con�guration that p4's cluster model is for.

6 Experiences

p4 has hundreds of users around the world. We describe here a sampling of applications that

demonstrate the wide range of ways in which p4 has been used.

Monitors: Automated Reasoning. Argonne has long been in the forefront of automated rea-

soning research. The parallelization of our primary theorem prover presented a particular problem

because of its central shared data structures. The tight interweaving of indices and shared sub-

structures makes this an intrinsically shared-memory application. We used p4's shared-memory

operations, in particular the p4 askfor monitor, to implement the algorithm presented in [25] and

10

got excellent results [19], even for the very �ne-grained parallelism necessary for this application.

We developed it on a Sequent Symmetry and ran it for peak performance on an Alliant FX/2800.

Portable Message-Passing: Phylogenetic Trees. p4 was used to develop a parallel version of

the \maximum likelihood" method of computing phylogenetic trees from RNA sequence data [22].

The largest such tree ever computed was derived using p4 and the Intel Touchstone Delta. The

portability of the program enabled it to be developed on a Sequent (which has a good debugging

environment), run on small data sets on workstation networks, tested further on the Intel iPSC/860,

and �nally run in production mode on the Intel Delta, all without changing a single line of source

code. Most recently, the same code has been used to discover new phylogenetic trees on the IBM

SP-1.

Clusters: Full Con�guration Interaction. Another application comes from the area of com-

putational chemistry. This application �ts best into the shared-memory model, in that a global data

structure is both read and updated in random patterns by all of the processes. Using p4's cluster

model, we ported this program to a collection of four 25-processor Alliant FX/2800's connected by a

HiPPI switch. That is, processes on a single cluster (one 25-processor Alliant) used monitors to co-

ordinate access to their part of the shared data and to schedule themselves (using p4 askfor). Data

in other clusters was accessed by sending messages to a data-manager process in that cluster. Again,

p4's portability made it possible to develop the program on a single Sequent Symmetry (procgroup

options allow the partitioning of a single shared-memory machine into several that communicate via

messages) before running it on a set of Alliants connected by the HiPPI switch.

Heterogeneous Computing: Piezoelectric Crystals. A large �nite-element code for comput-

ing resonances in piezoelectric crystals was written by Mark Jones and Paul Plassmann in conjunction

with Motorola [6]. The primary computation was done on the Delta, and p4 was used for commu-

nication with the �le server (a large-memory Solbourne located 2000 miles away), and a Stardent

Titan for displaying graphical output.

Invisible Usage: Superconductivity. An example of usage of p4 without the user \knowing

it" is the work reported in [8]. Here, the users are modeling vortex dynamics in high-temperature

superconductors using the three-dimensional, time-dependent Ginzburg-Landau equation as a phe-

nomenological model. The data movement between processors is done by using the the BlockComm

[9] system. The development and debugging of this code were done on Sun workstations and then

moved into production on the Intel DELTA.

Large Workstation Networks: Test Pattern Generation. Peter Krauss at the Technical

University of Munich has been using p4 to do test pattern generation [16] on a homogeneous network

of Hewlett-Packard workstations. He has run his p4 application on as many as 102 workstations

at the same time. He also runs the same program on an Intel iPSC/860 and on a heterogeneous

network made up of a Sequent Symmetry together with workstations from DEC, HP, and Sun.

Portable Application Benchmarks. A number of groups are beginning to assemble collections

of \real" application programs that can be used to measure performance on parallel machines. Two

of these such e�orts are the SPLASH project at Stanford [24] and the Perfect Club Benchmarks.

Portable versions of the codes make them much more useful. The SPLASH codes have been con-

verted to use p4's shared-memory operations, and work is in progress to convert the Perfect Club

benchmarks to p4's message-passing operations.

11

7 Related Systems

p4 is designed to be used as part of other systems and is currently playing a role in several projects.

p4-Linda. An implementation of the Linda programmingmodel has been done, using both shared-

memory and distributed-memory models for the the underlying hardware [5].

BlockComm and Chameleon. p4 is one of the \machines" on which Bill Gropp's Chameleon

system [10] runs. Thus it is possible to run a program that has been coded for the Intel iPSC/860,

say, and run it on a workstation network using p4, without changing source code. Chameleon is

the foundation for the BlockComm communication library [9], which allows users to avoid explicit

construction of messages when the messages consist of matrix subblocks.

MPI. Many vendors, users, and authors of message-passing systems have organized to try to de�ne

a standard message-passing interface. This \standard" is (as of this writing) still in
ux, but parts

of it are solidifying. Bill Gropp and Ewing Lusk are providing a reference implementation for the

standard as it is developed, and this implementation uses the Chameleon system, and thus either

p4 or PVM, for its network implementation.

Figure 5: upshot Looking at Parallel Automated Reasoning Program

Parallel program visualization. Distributed with p4 is a portable library called alog for pro-

ducing log �les of user-speci�ed events. These �les can then be examined with a variety of tools.

One that we have used extensively for some time for studying the behavior of p4 programs is upshot

12

[13, 18]. In Figure 5 we see upshot being used to display details of a run made on the parallel au-

tomated reasoning system described above. alog is also used to instrument p4 internally. If certain

compile-time switches are set, any p4 program will produce alog log�les. alog is not directly tied

to p4; it has also been used to instrument a variety of other parallel programming systems.

Program animation. In Figure 6 we demonstrate a more elaborate program visualization system

called PADL (Program Animation Display Language), which is currently under development. Here

we see a graphical display of a p4 programwith a dynamically changing display of individualmessages

and accumulated statistics.

DQS. One di�culty with e�ciently using a network of workstations as a parallel computer is

scheduling a queue of parallel jobs. Jim Patterson at Boeing has developed a version of DQS that

schedules p4 jobs. This is being incorporated into the standard DQS distribution by Tom Green at

Florida State.

Figure 6: Examining log�les with PADL

8 Status and Future Work

p4 will continue to be a portable parallel programming system that incorporates new ideas in parallel

computing. The next generation of operating system seems likely to o�er a \thread" model for

parallel programming that is still relatively unexplored. For shared-memory machines, monitors can

play a useful role in providing a higher layer of operations than that supplied by thread packages

themselves. They are also a useful layer at which to provide portability among various thread

libraries, and for providing a shared-memroy programming model in Fortran. In the message-

passing area, we hope that vendor implementations of MPI will replace p4's portability layer with

13

corresponding improvements in e�ciency. And the cluster model will become more visible as it

arrives in the form of multiprocessor workstations on networks (Sun, SGI), hierarchical machines

(Convex), and multiprocessor nodes on multicomputers (Intel).

9 Acknowledgments

We thank Ross Overbeek, co-author of the two predecessor systems to p4. We thank especially our

users, whose comments, complaints, and requests helped to design p4 and make it sturdy. Particular

thanks to go to local users Dave Levine, Barry Smith, and Bill Gropp, who performed the service

and paid the price of being the �rst to use each new release.

10 Availability

p4 is in the public domain and can be obtained by anonymous ftp to info.mcs.anl.gov at Argonne

National Laboratory. It is also available through netlib. The distribution contains all the source

code, a meta-make�le to build p4 on any of the machines described below, a set of examples, and

a User's Guide [4], which can be installed as an on-line help system as well, via the Gnu Emacs

info mechanism. It is available for the following set of machines: Sequent Symmetry; Encore

Multimax; Alliant FX/8, FX/800, FX/2800, and Campus; Cray X/MP and C-90; Sun, NeXT,

HP,DEC, Silicon Graphics, and IBM RS/6000 workstations; Stardent Titan; BBN GP-1000 and

TC-2000; Intel iPSC/860, Touchstone Delta, CM-5, and Paragon; nCUBE; KSR; and IBM SP-1. It

is not di�cult to port to new systems, and we intend to do these ports when new machines become

available.

References

[1] Bob Beck. Shared-memory parallel programming in C++ (rational parmacs). In Proceedings

of the 2nd Annual Meeting, Sequent User's Resource Forum, pages 187{205, 1988.

[2] L. Bomans, D. Roose, and R. Hempel. The Argonne/GMD macros in FORTRAN for portable

parallel programming and their implementation on the Intel iPSC/2. Parallel Computing,

15:119{132, 1990.

[3] James Boyle, Ralph Butler, Terrence Disz, Barnett Glickfeld, Ewing Lusk, Ross Overbeek,

James Patterson, and Rick Stevens. Portable Programs for Parallel Processors. Holt, Rinehart,

and Winston, 1987.

[4] Ralph Butler and Ewing Lusk. User's guide to the p4 parallel programming system. Technical

Report ANL-92/17, Argonne National Laboratory, October 1992.

[5] Ralph M. Butler, Alan L. Leveton, and Ewing Lusk. p4-Linda: A portable implementation of

Linda. In C. S. Rajhavendra and Salim Hariri, editors, Proceedings of the Second International

Symposium on High-Performance Distributed Computing. IEEE Computer Society Press, 1993.

(to appear).

[6] Tom Can�eld, Mark Jones, Paul Plassmann, and Michael Tang. Thermal e�ects on the fre-

quency response of piezoelectric crystals. In New Methods in Transient Analysis, PVP-Vol. 246

and AMD-Vol. 143, pages 103{108, New York, 1992. ASME.

[7] John Gabriel, Tim Lindholm, E. L. Lusk, and R. A. Overbeek. Logic programming on the HEP.

In Janusz S. Kowalik, editor, Parallel MIMD Computation: The HEP Supercomputer and Its

Applications, pages 367{411. MIT Press, 1985.

14

[8] N. Galbreath, W. Gropp, D. Gunter, D. Levine, and G. Leaf. Parallel solution of the three-

dimensional, time-dependent Ginzburg-Landau equation. In Proceedings of the SIAM Confer-

ence on Parallel Processing for Scienti�c Computing, 1993.

[9] William Gropp. Blockcomm for fortran. Technical report, Argonne National Laboratory, 1993.

(to appear).

[10] William Gropp and Barry Smith. Parallel programming tools user's manual. Technical report,

Argonne National Laboratory, 1993. (to appear).

[11] Per Brinch Hansen. The Architecture of Concurrent Programs. Prentice-Hall, Inc., 1977.

[12] R. J. Harrison. Portable tools and applications for parallel computers. Intern. J. Quantum

Chem., 40(847), 1991.

[13] Virginia Herrarte and Ewing Lusk. Studying parallel program behavior with upshot. Technical

Report ANL{91/15, Argonne National Laboratory, 1991.

[14] C. A. R. Hoare. Monitors: An operating system structuring concept. Comunications of the

ACM, pages 549{557, October 1974.

[15] Janusz S. Kowalik, editor. Parallel MIMD Computation: The HEP Supercomputer and Its

Applications. Scienti�c Computation Series. MIT Press, 1985.

[16] Peter A. Krauss and Kurt J. Antreich. Application of fault parallelism to the automatic test

pattern generation for sequential circuits, 1993. (to appear in Springer LNCS).

[17] E. L. Lusk and R. A. Overbeek. Use of monitors in FORTRAN: a tutorial on the barrier,

self-scheduling DO-loop, and askfor monitors. In Janusz S. Kowalik, editor, Parallel MIMD

Computation: The HEP Supercomputer and Its Applications, pages 367{411. MIT Press, 1985.

[18] Ewing L. Lusk. Visualizing parallel program behavior. In Adrian Tentner, editor, High Per-

formance Computing 1993: Grand Challenges in Computer Simulation, pages 209{213. The

Society for Computer Simulation Simulation, 1993.

[19] Ewing L. Lusk and WilliamW. McCune. Experiments with ROO, a parallel automated deduc-

tion system. In B. Fronhoefer and G. Wrightson, editors, Parallelization in Inference Systems

(Springer Lecture Notes in Arti�cial Intelligence 590), pages 139{162. Springer-Verlag, 1992.

[20] Ewing L. Lusk and Ross A. Overbeek. Implementation of monitors with macros: A programming

aid for the HEP and other parallel processors. Technical Report ANL-83-97, Argonne National

Laboratory, December 1983.

[21] Ewing L. Lusk and Ross A. Overbeek. A minimalist approach to portable, parallel programming.

In Leah H. Jamieson, Dennis B. Gannon, and Robert J. Douglass, editors, The Characteristics

of Parallel Algorithms, pages 351{362. MIT Press, 1987.

[22] Gary Olsen, Carl Woese, Ray Hagstrom, Hideo Matsuda, and Ross Overbeek. Inference of phy-

logenetic trees using maximum likelihood. In Proceedings of the First Intel Delta Applications

Workshop, pages 247{262, 1992.

[23] John Osterhout. An X11 toolkit based on the Tcl language. In Proceedings of the Winter 1991

USENIX Conference, pages 105{115. USENIX Association, January 1991.

[24] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stanford parallel

applications for shared memory. Computer Architecture News, 20(1):5{44, March 1992. Also

Stanford University Technical Report No. CSL-TR-92-526, June 1992.

[25] J. Slaney and E. Lusk. Parallelizing the closure computation in automated deduction. In

M. Stickel, editor, Proceedings of the 10th International Conference on Automated Deduction,

Lecture Notes in Arti�cial Intelligence, Vol. 449, pages 28{39, New York, July 1990. Springer-

Verlag.

15

